Antioxidant transport modulates peripheral airway reactivity and inflammation during ozone exposure.

نویسندگان

  • A N Freed
  • R Cueto
  • W A Pryor
چکیده

We examined the effects of ozone (O(3)) and endogenous antioxidant transport on canine peripheral airway function, central airway function, epithelial integrity, and inflammation. Dogs were either untreated or pretreated with probenecid (an anion-transport inhibitor) and exposed for 6 h to 0.2 parts/million O(3). Peripheral airway resistance (Rpa) and reactivity (DeltaRpa) were monitored in three sublobar locations before and after exposure to either air or O(3). Pulmonary resistance and transepithelial potential difference in trachea and bronchus were also recorded. Bronchoalveolar lavage fluid (BALF) was collected before, during, and after exposure. O(3) increased Rpa and DeltaRpa only in probenecid-treated dogs and in a location-dependent fashion. Pulmonary resistance and potential difference in bronchus increased after O(3) exposure regardless of treatment. O(3) markedly increased BALF neutrophils only in untreated dogs. With the exception of hexanal, O(3) did not alter any BALF constituent examined. Probenecid reduced BALF ascorbate, BALF protein, and plasma urate. We conclude that 1) a 6-h exposure to 0.2 parts/million O(3) represents a subthreshold stimulus in relation to its effects on peripheral airway function in dogs, 2) antioxidant transport contributes to the maintenance of normal airway tone and reactivity under conditions of oxidant stress, 3) O(3)-induced changes in Rpa and DeltaRpa are dependent on location, and 4) peripheral airway hyperreactivity and inflammation reflect independent responses to O(3) exposure. Finally, although anion transport mitigates the effect of O(3) on peripheral airway function, it contributes to the development of airway inflammation and may represent a possible target for anti-inflammatory prevention or therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Obesity on Acute Ozone-Induced Changes in Airway Function, Reactivity, and Inflammation in Adult Females

We previously observed greater ozone-induced lung function decrements in obese than non-obese women. Animal models suggest that obesity enhances ozone-induced airway reactivity and inflammation. In a controlled exposure study, we compared the acute effect of randomized 0.4ppm ozone and air exposures (2 h with intermittent light exercise) in obese (N = 20) (30<BMI<40Kg/m2) vs. non-obese (N = 20)...

متن کامل

Association of ambient ozone exposure with airway inflammation and allergy in adults with asthma.

RATIONALE Previous studies have demonstrated associations of high ozone levels with increased epidemiologic as well as lung function measures of asthma activity. OBJECTIVES In an observational study during the summer months, we hypothesized that higher ambient ozone levels are associated with more frequent symptoms, higher airway and systemic inflammation, as well as worse lung function in as...

متن کامل

IL-17A Modulates Oxidant Stress-Induced Airway Hyperresponsiveness but Not Emphysema

IL-17A induces the release of pro-inflammatory cytokines and of reactive oxygen species which could lead to neutrophilic inflammation. We determined the role of IL-17 receptor (IL-17R) signalling in oxidant-induced lung emphysema and airway hyperresponsiveness. IL-17R(-/-) and wild-type C57/BL6 mice were exposed to ozone (3 ppm; 3 hours) for 12 times over 6 weeks. Bronchial responsiveness to ac...

متن کامل

Ozone-induced airway epithelial cell death, the neurokinin-1 receptor pathway, and the postnatal developing lung.

Children are uniquely susceptible to ozone because airway and lung growth continue for an extensive period after birth. Early-life exposure of the rhesus monkey to repeated ozone cycles results in region-specific disrupted airway/lung growth, but the mediators and mechanisms are poorly understood. Substance P (SP), neurokinin-1 receptor (NK-1R); and nuclear receptor Nur77 (NR4A1) are signaling ...

متن کامل

Dual p38/JNK Mitogen Activated Protein Kinase Inhibitors Prevent Ozone-Induced Airway Hyperreactivity in Guinea Pigs

Ozone exposure causes airway hyperreactivity and increases hospitalizations resulting from pulmonary complications. Ozone reacts with the epithelial lining fluid and airway epithelium to produce reactive oxygen species and lipid peroxidation products, which then activate cell signaling pathways, including the mitogen activated protein kinase (MAPK) pathway. Both p38 and c-Jun NH2 terminal kinas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 87 5  شماره 

صفحات  -

تاریخ انتشار 1999